HDF  N`  TREE`1(DhVe w8 x؛(0`z X(X0`+08?pHEAPx Consistent Trees_columnsscale(0) id(1) desc_scale(2) desc_id(3) num_prog(4) pid(5) upid(6) desc_pid(7) phantom(8) sam_Mvir(9) Mvir(10) Rvir(11) rs(12) vrms(13) mmp?(14) scale_of_last_MM(15) vmax(16) x(17) y(18) z(19) vx(20) vy(21) vz(22) Jx(23) Jy(24) Jz(25) Spin(26) Breadth_first_ID(27) Depth_first_ID(28) Tree_root_ID(29) Orig_halo_ID(30) Snap_idx(31) Next_coprogenitor_depthfirst_ID(32) Last_progenitor_depthfirst_ID(33) Last_mainleaf_depthfirst_ID(34) Tidal_Force(35) Tidal_ID(36) Rs_Klypin(37) Mvir_all(38) M200b(39) M200c(40) M500c(41) M2500c(42) Xoff(43) Voff(44) Spin_Bullock(45) b_to_a(46) c_to_a(47) A[x](48) A[y](49) A[z](50) b_to_a(500c)(51) c_to_a(500c)(52) A[x](500c)(53) A[y](500c)(54) A[z](500c)(55) T/|U|(56) M_pe_Behroozi(57) M_pe_Diemer(58) Halfmass_Radius(59) rvmax(60) Macc(61) Mpeak(62) Vacc(63) Vpeak(64) Halfmass_Scale(65) Acc_Rate_Inst(66) Acc_Rate_100Myr(67) Acc_Rate_1*Tdyn(68) Acc_Rate_2*Tdyn(69) Acc_Rate_Mpeak(70) Acc_Log_Vmax_Inst(71) Acc_Log_Vmax_1*Tdyn(72) Mpeak_Scale(73) Acc_Scale(74) First_Acc_Scale(75) First_Acc_Mvir(76) First_Acc_Vmax(77) Vmax\@Mpeak(78) Tidal_Force_Tdyn(79) Log_(Vmax/Vmax_max(Tdyn;Tmpeak))(80) Time_to_future_merger(81) Future_merger_MMP_ID(82) Consistent Trees_metadata#scale(0) id(1) desc_scale(2) desc_id(3) num_prog(4) pid(5) upid(6) desc_pid(7) phantom(8) sam_Mvir(9) Mvir(10) Rvir(11) rs(12) vrms(13) mmp?(14) scale_of_last_MM(15) vmax(16) x(17) y(18) z(19) vx(20) vy(21) vz(22) Jx(23) Jy(24) Jz(25) Spin(26) Breadth_first_ID(27) Depth_first_ID(28) Tree_root_ID(29) Orig_halo_ID(30) Snap_idx(31) Next_coprogenitor_depthfirst_ID(32) Last_progenitor_depthfirst_ID(33) Last_mainleaf_depthfirst_ID(34) Tidal_Force(35) Tidal_ID(36) Rs_Klypin(37) Mvir_all(38) M200b(39) M200c(40) M500c(41) M2500c(42) Xoff(43) Voff(44) Spin_Bullock(45) b_to_a(46) c_to_a(47) A[x](48) A[y](49) A[z](50) b_to_a(500c)(51) c_to_a(500c)(52) A[x](500c)(53) A[y](500c)(54) A[z](500c)(55) T/|U|(56) M_pe_Behroozi(57) M_pe_Diemer(58) Halfmass_Radius(59) rvmax(60) Macc(61) Mpeak(62) Vacc(63) Vpeak(64) Halfmass_Scale(65) Acc_Rate_Inst(66) Acc_Rate_100Myr(67) Acc_Rate_1*Tdyn(68) Acc_Rate_2*Tdyn(69) Acc_Rate_Mpeak(70) Acc_Log_Vmax_Inst(71) Acc_Log_Vmax_1*Tdyn(72) Mpeak_Scale(73) Acc_Scale(74) First_Acc_Scale(75) First_Acc_Mvir(76) First_Acc_Vmax(77) Vmax\@Mpeak(78) Tidal_Force_Tdyn(79) Log_(Vmax/Vmax_max(Tdyn;Tmpeak))(80) Time_to_future_merger(81) Future_merger_MMP_ID(82) #Omega_M = 0.308900; Omega_L = 0.691100; h0 = 0.677400 #Full box size = 2000.000000 Mpc/h #Scale: Scale factor of halo. #ID: ID of halo (unique across entire simulation). #Desc_Scale: Scale of descendant halo, if applicable. #Descid: ID of descendant halo, if applicable. #Num_prog: Number of progenitors. #Pid: ID of least massive host halo (-1 if distinct halo). #Upid: ID of most massive host halo (different from Pid when the halo is within two or more larger halos). #Desc_pid: Pid of descendant halo (if applicable). #Phantom: Nonzero for halos interpolated across timesteps. #SAM_Mvir: Halo mass, smoothed across accretion history; always greater than sum of halo masses of contributing progenitors (Msun/h). Only for use with select semi-analytical models. #Mvir: Halo mass (Msun/h). #Rvir: Halo radius (kpc/h comoving). #Rs: Scale radius (kpc/h comoving). #Vrms: Velocity dispersion (km/s physical). #mmp?: whether the halo is the most massive progenitor or not. #scale_of_last_MM: scale factor of the last major merger (Mass ratio > 0.3). #Vmax: Maxmimum circular velocity (km/s physical). #X/Y/Z: Halo position (Mpc/h comoving). #VX/VY/VZ: Halo velocity (km/s physical, peculiar). #JX/JY/JZ: Halo angular momenta ((Msun/h) * (Mpc/h) * km/s (physical)). #Spin: Halo spin parameter. #Breadth_first_ID: breadth-first ordering of halos within a tree. #Depth_first_ID: depth-first ordering of halos within a tree. #Tree_root_ID: ID of the halo at the last timestep in the tree. #Orig_halo_ID: Original halo ID from halo finder. #Snap_idx: Index of snapshot (in original snapshot list) from which halo originated. #Next_coprogenitor_depthfirst_ID: Depthfirst ID of next coprogenitor. #Last_progenitor_depthfirst_ID: Depthfirst ID of last progenitor. #Last_mainleaf_depthfirst_ID: Depthfirst ID of last progenitor on main progenitor branch. #Tidal_Force: Strongest tidal force from any nearby halo, in dimensionless units (Rhalo / Rhill). #Tidal_ID: ID of halo exerting strongest tidal force. #Rs_Klypin: Scale radius determined using Vmax and Mvir (see Rockstar paper) #Mvir_all: Mass enclosed within the specified overdensity, including unbound particles (Msun/h) #M200b--M2500c: Mass enclosed within specified overdensities (Msun/h) #Xoff: Offset of density peak from average particle position (kpc/h comoving) #Voff: Offset of density peak from average particle velocity (km/s physical) #Spin_Bullock: Bullock spin parameter (J/(sqrt(2)*MVR)) #b_to_a, c_to_a: Ratio of second and third largest shape ellipsoid axes (B and C) to largest shape ellipsoid axis (A) (dimensionless). # Shapes are determined by the method in Allgood et al. (2006). # (500c) indicates that only particles within R500c are considered. #A[x],A[y],A[z]: Largest shape ellipsoid axis (kpc/h comoving) #T/|U|: ratio of kinetic to potential energies #M_pe_*: Pseudo-evolution corrected masses (very experimental) #Halfmass_Radius rvmax: Radius within which 1/2 of Mvir is enclosed. #Consistent Trees Version 1.01 #Macc,Vacc: Mass and Vmax at accretion. #Mpeak,Vpeak: Peak mass and Vmax over mass accretion history. #Halfmass_Scale: Scale factor at which the MMP reaches 0.5*Mpeak. #Acc_Rate_*: Halo mass (or log10 vmax) accretion rates in Msun/h/yr (or dex/yr). # Inst: instantaneous; 100Myr: averaged over past 100Myr, # X*Tdyn: averaged over past X*virial dynamical time. # Mpeak: Growth Rate of Mpeak, averaged from current z to z+0.5 # Log_Vmax: Growth Rate of Log10(Vmax) #Mpeak_Scale: Scale at which Mpeak was reached. #Acc_Scale: Scale at which satellites were (last) accreted. #First_Acc_Scale: Scale at which current and former satellites first passed through a larger halo. #First_Acc_(Mvir|Vmax): Mvir and Vmax at First_Acc_Scale. #Vmax@Mpeak: Halo Vmax at the scale at which Mpeak was reached. #Tidal_Force_Tdyn: Dimensionless tidal force averaged over past dynamical time. #Log_(Vmax/Vmax_max(Tdyn;TMpeak)): Log10 of Vmax_now over Vmax@(Tdyn ago) OR Vmax@Mpeak (if and only if Mpeak happened > 1Tdyn ago). #Time_to_future_merger: Time (in Gyr) until the given halo merges into a larger halo. (-1 if no future merger happens) #Future_merger_MMP_ID: most-massive progenitor of the halo into which the given halo merges. (-1 if the main progenitor of the future merger halo does not exist at the given scale factor.) @Consistent Trees_version1.01 H HDF5_version.GCOL1.10.12.10.0 8 TotNhalos@ H h5py_version @input_catalog_typeConsistent Trees Hinput_filedatestamp ?@4 4A Pinput_filename'All100.hdf5/hlist_00000046_0.08740.list== ?@4 46C_xSNODP02 3(4== ?@4 48C_x== ?@4 4:C_x== ?@4 4p<C_xU'@7T7a+eBsF@|г0@HIO@v@_(@?-}гYƢd0@ )? @Zd;$@߾(̒u@`TR' @ ^)(4 S@3t0@[| @#@7(2@j+)@8d`&@ c?@|г)2@S:10@,Ԛ&@M O.d;O.@0Bxq@,Ԛg(Ù_"@ǘ)@?Ŋ@|a2U0 <@eX/@iot,@T4 @؁sFf1@ɣ&@tF0 pE#@/iQu"@:}kOgIZPkw/"?|a21@R!%:Mm1@mT[(ΪV1@|гY@:pΈr$@_8@a镲l)@Zd;O,@odC@|,}Z]fھ@Gr+@|a2U0@ D @~@?E_"*p7㪲?Jc@ ףp=&j++a@6T?h4@"^)@o%;6b[tY @W(~ki*@C`*@Jh#@HzW4@x&10@R'(@KY8"@Zڊ]+խ#@-&6@,σHz @48Eg@ Tƿ@AfՇ4@St$)@KA @eN @ŏ1'@_"@!rhM) />@,H|0@N`"@1@o_G)@I_#ʡE) ܺxz,C'@hs5&N֨h Y/r?hHK2w-!T3@!<8b?_xz㥛 P&@i&kje#@2_^}C6+@FB[ΥX@.@}DL$J!C6&o<@ڏa5"1w-!(@҇.o@cZ1@:dw sh|?*@9zF#@"@_vO?[rPŒB@wb֋@u&P1@( /@_9: @K73@#-@pq鷯#%D(@h:;пypw῍=!@[ A-@mX9v&@Pp @?ܵ(@*:H,@&S?#3@/ !n4@b)@R8x!&†$@ʡE%@ea$ x@ !؁sF$v Cl&@HȰWioɴ,@== ?@4 4FC_x== ?@4 4HC_x== ?@4 4JC_x== ?@4 4pLC_x== ?@4 4XNC_xSNOD8>@?P@hA== ?@4 4@PC_x"~Z5@RI&r0@B4@鷯(x.@x&1>@V/2@*:'@/ V'@bX9,@AǘsD@DioI1@{@ h"4@W[&?ܵ0@E|'f?s(y&1&s5@_L0*1@I.!4@;pΈ^,+@_vO(@D2@dzjq5@ZB>?0' 3@гY/@C`+@ѮBO׿xf-ʫs ^@K3@0*-{/L+@[Ӽ3@ h"l0@-2@٬\ (@J4=@.?%5@ -2@V-:@˜.?I +9@@aӫ-gDio0@378@h"lxze2@b.@I.!,@8gDio`0@}?5^)'@`q8On0@d;O)@:̗Q.@!uq!(\O)@58EG9@Ex-@Nё\)@Q[ŏ1w-$@1Z)@Q|2@;Nё+@Sr@QI2@u! 镲 )@bE?x&/@&†g'?/@7$&_LJ1@^)02@F ^/X#~8gD+@gs@+e2@Y] Gz/@CR@ΪVL4@58EG-@ŏ1w-a'@}tgy8gDiO)£#6@h"lxz0@<,z%M-[다"@N ^d"d;O)@B5@o_(@J +6@ݿ/$/@p= .@7)@k) hoA1@RH.)@3bb@鷯c+@X9v(@G`w @ͪ+@TR'&@Cn\H1\#>>~ES=-'>kZ>N4ˤ!>퍎5>x(>${&%>b~u>N$^>|..>(>YI">Ow>[Av!>>ՏMz>aaH.>sEi>^'Ǔ >W ;>x'>ġrh>z2>ብ%> > uH">)S)!>?9($$> 9*>J4>Vu?O]>!>e >ŕ>Ŵ!E >d)>R$>V{υ >JA\>U'>}N$> &>Ew>h|5%>w9 >}<{ >s6>I$wS>w >:%K,>JX>L/b@>2!>)`d>V{υ>R:Њ>ݐw4 >wJ>,%2{2>y\fw">CBn>e۵ >\=,U$>z{a>'>ብ>̺0&>Ⅹ(1 >%>3P ⽔9~l> af > -ᥜ >va }>[5>=)ӊ>If5=+'>ΖS&>U .>z׮,=3> >&>ǬE>|?6( #!>)R$>La㧝>ha>͸>MFZ}=,h?9>u8[x46>@>*s>.X>דL`>דL`>B1ŽbIYSF 3>e.s>U|O>&>fffff:@̠@33333@@@̔@@@ڥ@@33333@fffff@@@΢@K@(@=@$@0@@fffffƊ@@d@d@@ @9@@Ȝ@̤@fffffv@`@̛@33333{@u@̌@fffffֈ@33333@@X@fffff‡@fffff@@@@D@@̜@Ȅ@$@@@@fffff@̐@,@0@$@@(@Ȓ@@Ձ@D@@@t@@ڥ@ч@33333@a@@@P@K@(@8@$@0@@fffffҍ@33333@33333@d@@ @@33333ϊ@@33333_@=@`@̛@33333{@@fffff@fffffZ@33333@D@@̔@fffffʍ@@@33333+@@А@@@@@ؒ@$@@Y@fffff@@fffff @@Ȕ@(@Ȓ@== ?@4 4(ZC_x== ?@4 4\C_x== ?@4 4C_x== ?@4 4]C_xSNODBPE(R8S== ?@4 4_C_x==@aC_@~@̆@@@4@@ڥ@fffff@33333@fffff@@@n@K@(@fffff@$@0@@̈@fffffN@ @d@@ @l@33333@d@,@@`@̛@33333{@@,@$@33333@@33333@33333@@@@@@33333@@@33333@@fffffJ@@fffff@@D@<@33333É@@(@Ȓ@x@33333@@D@@@T@ڥ@@33333@ @I@@̣@K@(@@$@0@@X@@<@d@@ @fffff@fffff@@33333@@`@̛@33333{@@@@33333@p@@33333[@@@@}@@@@fffff@@@@@@d@Đ@fffff@l@@(@Ȓ@x@33333@@D@@@T@ڥ@@33333@ @I@@̣@K@(@@$@0@@X@@<@d@@ @fffff@fffff@@33333@@`@̛@33333{@@@@33333@p@@33333[@@@@}@@@@fffff@@@@@@d@Đ@fffff@l@@(@Ȓ@V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?iv?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?hrsxDlsz#PsI@Psw)XsR)`s;,`s?vhs-YxssJsZ+si s/sK>sK>s$͈s_: sE0ssBsWtt3y:tO&(t3(t [e8t1@t}Q@tNHto6HtHt*XtpH{Xt"ht' pt*t1 tv t;t"ttttDt8tEHtBtm<tts-T u]0uwV8u~@u~@uk@uBZHu{ Pu;Ihu' puxu**xu==@kC_== ?@4 4mC_xSNODUXYc== ?@4 4oC_x== ?@4 4hqC_x==@PsC_== ?@4 48uC_xs7ls7.#Ps@Ps(4)Xs)`s,`sh9vhs{Yxs!#sjs+s- sT/s=s=sƈs~ scs.suAs{mtQF:t{&(t3(trRe8t@tvfQ@tHtE6Ht=Ht*Xt>{Xt!ht[ ptЎ*t tP< t(;t@1"t@ttN<tt\7t3/Ht3BtttT u0uaV8uv@u*@uk@u8ZHuPuq#IhuǾpu`xu*xu֕U;BH8B:BC;BpNB|7Bq7KBs-GB8B!Z9B8Bn9B!Z9BFcRB@'HQBdD2B ;BFG7Bn9BH9B8B:B>EB'9Bv7@B))BB.b=B8Bh~HBSpBy=BW>=Bn9Bn9BB m:B8B:BH9BFBCBuJ>B7B0AB*EB>B1P9BH9B0>BJEBP=B=BiFB?+>BhgC:BV_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?iv?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?n@33333Kk@Q o@̄m@(\r@Hzkp@q= ףr@p@Gzk@fffffn@QMl@q= ףXn@33333k@Qtu@Gz:u@i@q= ף0k@\(l@zGn@)\pn@ ףp=l@(\k@Q$p@(\Wm@zGp@Hzwn@q= ףTp@zG)l@\(r@ ףp=rn@j@= ףpq@q= ףl@Dq@Qk@ףp= l@l@fffffm@Qfq@(\l@q= ף`m@ ףp=zl@̄l@Qk@ ףp="m@{GNq@Q+q@Hzm@= ףpm@= ףpm@\(p@(\m@ףp= j@Qm@QMo@ ףp=p@= ףp-n@(\l@ףp= q@(p@{G n@s sYPs{PsXs `sL`shsǕs sc0s sssVsʺs|s@tt7(t"8t@tHtΩHtiHt)Xt*XthtCpt tttWt2+t 0tt5tNtsttXtv u&0u8u<@u<@ub@uҹHuPu^hu5pu@xu rHK@Gz.N@NbX9tI@;OM@QS@HzC@vRQ@:vWQ@Zd;OmM@jtG@On2J@Zd;H@&1Q@oʉQ@FP@7A`I@SQ@&1G@ rH@x&H@VJ@ClM@Q R@V-K@d;OH@q= ףP@Mb(I@EJ@RL@q= ףpJ@/$N@RD@cX9P@(\UF@OnL@tV^K@I +M@n:I@q= ףQ@K7J@QP@K7L@V-RJ@#~jP@GzI@QP@_I +O@RQP@n@F@Zd;OUV@V- P@GzVQ@w/ Q@:vH@jtJ@^I P@(\µM@QP@i|?N@Zd;H@nI@SNODdg((h88i== ?@4 4 C_x== ?@4 4XC_xSNOD== ?@4 4C_x== ?@4 4؄C_xPf?Pf?Pf?Pf?Pf?iv?iv?V_?Pf?iv?Pf?Pf?V_?Pf?V_?iv?iv?iv?V_?iv?iv?Pf?Pf?iv?V_?V_?Pf?iv?iv?Pf?Pf?iv?V_?iv?iv?Pf?Pf?iv?Pf?Pf?Pf?iv?V_?iv?Pf?Pf?Pf?Pf?Pf?iv?Pf?Pf?iv?Pf?Pf?Pf?Pf?iv?Pf?iv?iv?A.A0_JA&HAx!BhM2Bp5}%Ap5}T`AJz),B,#A B T=ī%A {A@A lAImA%F5\y At%A GUJ;`,5PDz8A 4`lS %A'XA8$BL8?@ AAUA7Tn AAWBpA܆AAx9%A@#A A8JAT0AAnA"BxhfsD0cJ[07-8zVnOABAW0 AxgA,APQw\ Bp>}.BP{Xt!ht[ ptҎ*t tQ< t+;tC1"tCttN<tt_7t6/Ht6Btt!t"T u 0uaV8uw@u-@uk@u8ZHuPut#Ihuʾpu`xu*xus7ls:.#Ps@Ps04)Xs)`s,`sh9vhsYxs"#sns+s- sT/s=s=sƈs scs/swAs~mtVF:t&(t3(trRe8t @tyfQ@tHtE6Ht@Ht*Xt>{Xt$!ht[ ptҎ*t tQ< t+;tC1"tCttN<tt_7t6/Ht6Btt!t"T u 0uaV8u}@u2@uk@u8ZHuPut#Ihuʾpu`xu*xu~?P?('?ho?lV}?!uq?M O?~n?fk}Ж?H}8?BsF?-C6?R?,i&? 8??^`7l[?M#?:#J{/?)D/? 7?-Ľ?0G?n?&Nw(?=Ͻ?:f? vöE?n»?vۅ?.4ש?£#?{P?O`ô?iv?(\?5?Ù_? [tY?37?K7?}Y?L7A`?u&N?/n?7?Lݼ?}:3P?=yX5?|y?׻?ޫV? S"?4i?X:BL7B. :B9,;B DwMBյ_7B JB@9lFB7B}^8B"8BFG9BI8BL RBPB@r BBn9BL7BȾ8BF]8BC8B.0:BʎDBT39B?B@T@B=B 7BTGB.;Bv47B+=BJBT39BX:BL7B. :B9,;B DwMBյ_7B JB@9lFB7B}^8B"8BFG9BI8BL RBPB@r BBn9BL7B8BF]8BC8B.0:BʎDBT39B?B@T@B=B 7BTGB.;Bv47B+=BJBT39B== ?@4 4C_x== ?@4 4C_x== ?@4 4xC_xSNOD== ?@4 4`C_x== ?@4 4HC_x== ?@4 40C_xA}BBj%B-.BA%'B;r B1BƧ%B3B:NBBgH4By,B$BPAB-BB7BJ/B!BtB&BJ/B8;B;rB/B[BJ/B/&.Bؤ#B B<BLA;?B(!B1B}B B1B}A:NB"iB #BȺB3BtA%B5A"i B1B$5!B$BƧ%BB +B$B;?B+5BnM.B@6B@g4B DB3B^DBK>B@10B"O6BR20Bŷ*5BY(BMNBsKB>B&Br0B2Bʎ4Bv2B@K0Bn9BV-4Bs8B@Q5Bn9Bn1B@CB0e5Bs+BB>B5B HBr9B h_4BMABrx8BSy@B/5BfW6BFG7B7BpDBB6BX 9B5B>j4Bo6BR y6B9CBBB":Bda6B]=BLBBva9Bp6B%x7BK;BIBB:Bl/V=BƾDB=B8BH8B8Bi.B댖9B͍JB2BGHB6GB":Bm"B)4Bl*B?B$GB`JBړ2BF]HB#N.BX*Bv4'Bxr0B֕U;BtGB1B0BoDBŅ1*B?3Bc8?B e5BUEB'9Bv7@B))BB.b=B8Bh~HBSpBy=BW>=Bn9Bn9BB m:B8B:BH9BFBCBuJ>B7B0AB*EB>B1P9BH9B0>BJEBP=B=BiFB?+>BhgC:B֕U;BH8B:BC;BpNB|7Bq7KBs-GB8B!Z9B8Bn9B!Z9BFcRB@'HQBUBB ;BFG7Bn9BH9B8B:B>EB'9Bv7@B))BB.b=B8Bh~HBSpBy=BW>=Bn9Bn9BB m:B8B:BH9BFBCBuJ>B7B0AB*EB>B1P9BH9B0>BJEBP=B=BiFB?+>BhgC:B== ?@4 4C_xSNODȚ (00@== ?@4 4C_x== ?@4 4C_x==@йC_==@C_SNOD8HpP`V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?֕U;BH8B:BC;BpNB|7Bq7KBs-GB8B!Z9B8Bn9B!Z9BFcRB@'HQBUBB ;BFG7Bn9BH9B8B:B>EB'9Bv7@B))BB.b=B8Bh~HBSpBy=BW>=Bn9Bn9BB m:B8B:BH9BFBCBuJ>B7B0AB*EB>B1P9BH9B0>BJEBP=B=BiFB?+>BhgC:B֕U;BI8Bk:B٪;BNB?v7Ba8KB!/GBP8Bn9Bs8B$9B!Z9BFcRB HQB.BB9,;B7B$9BW9B8B:BS>EB[9B7@B@(BBc=Bs8BHBBXw=B$<=B$9B$9BQfBbk:B18Bk:BW9BNFBCBeM>B!7BAB*EB!>B9BW9Bl>BȟEB+=B=BNFB>BD:B;.#Ps14)Xs,`si9vhs##sT/s=sƈsds0sWF:t3(tsRe8tzfQ@t%!ht[ ptDtt7/Ht"t#T u3@uk@u8ZHuu#Ihu`xu<!pR',8:q A  F.@[lV|%+eEyB SGR !''5>?jWP\2eaVqVqr_== ?@4 4C_x== ?@4 4C_x== ?@4 4pC_x== ?@4 4C_x== ?@4 4C_x== ?@4 4pC_x== ?@4 4XC_xH}82@Ciq:@&.@z,C{5@/L A@L"@)\h8@QIA@Qkw7@ݓ%,@<,Ԛ5@ǘ/@a+ey@@1w-!6@xz,C 5@x $(-@@ǠF@[ Aq1@1~0@%u;.@Ciqz3@ F%u>@_vOB@46<2@7A`p,@1*4C@OeH,@鷯S6@㥛 1@k2@n@@nʡ$@\m>@M O%@Yڊ9@X05@o;@ΪV1@ڊe>@&†G3@mV}>@gDioe8@^K=4@j+<@ y93@<,Ԛ&;@ŏ13@M Oo;@m,@?\G@Cl7=@T>@E@m4P1@*:3@NbX9>@鷯6@\(4@@>W[O6@4@0@ g:1@FԠ^@5^I r]@/$f^@ҽ^@?5^Id@"~:]@nDc@V-Cb@jt]@X9]@FԨ]@h|?]@X9]@/Le@xd@T㥛`@m^@OnR]@h|?]@Gz]@zG]@(\W^@zGa@#~j ^@J +6`@ˡE`@q= ף`_@FԨ]@ˡEb@o^@oʁ]@= ףp_@V-g_@nR_@h|?]@h|?]@+/_@oʁ]@㥛 b@]@S_@ rH^@Q]@/$f^@Gz]@NbX94b@33333Ka@Pn_@"~B]@K7`@p= ׷a@;O_@/^@Gz]@ +_@K7Aa@5^I _@?5^I|_@bX9$b@(\_@K79^@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@a?h:;?ŊLÐ?uv28J^?O}:3?=~oӏ?9J^c@?>$@M-?P6 r?ϛT?dw?죓?9L?fC?e6$?HP?"?a?]T?+yp?~:?Ku?cz({?T[?dF ^?(rw??;D?H}?a?g? r߉?N],σ?7d?^`7l[t?Aǘ? %̔?3mJ?Yn̓?9v?9̗`?M?9v?/' ?ޓZӜ?_vO??#?5l/r?:f?ݵ|г?;u<?kC8?ZM?CB?aۢy?*oG8-x?=aM? x#?fk}Ж?>?A_xA_x_500cA_yA_y_500cA_zA_z_500cAcc_Log_Vmax_1_TdynAcc_Log_Vmax_InstAcc_Rate_100MyrAcc_Rate_1_TdynAcc_Rate_2_TdynAcc_Rate_InstAcc_Rate_MpeakAcc_ScaleBreadth_first_IDDepth_first_IDFirst_Acc_MvirFirst_Acc_ScaleFirst_Acc_VmaxFuture_merger_MMP_IDHalfmass_RadiusHalfmass_ScaleJxJyJzLast_mainleaf_depthfirst_IDLast_progenitor_depthfirst_IDLog_Vmax_Vmax_max_Tdyn_Tmpeak_M200bM200cM2500cM500cM_pe_BehrooziM_pe_DiemerMaccMpeakMpeak_ScaleMvirMvir_allNext_coprogenitor_depthfirst_IDOrig_halo_IDRs_KlypinRvirSnap_idxSpinSpin_BullockT_UTidal_ForceTidal_Force_TdynTidal_IDTime_to_future_mergerTree_root_IDVaccVmax_MpeakVoffVpeakXoffb_to_ab_to_a_500cc_to_ac_to_a_500cdesc_iddesc_piddesc_scaleidmmpnum_progphantompidrsrvmaxsam_Mvirscalescale_of_last_MMupidvmaxvrmsvxvyvzxyzSNODxy==@@C_&?M|?Xj?Pup?gaO;5?JiWV?Q,?0*?4i?@zG0@)\)@Gz.>@QH@ףp= wD@(\R@2@)\.@GzT@Gz4@Gz,@)\h4@fffff`@Q<@= ףp}E@\(.@ףp= W7@QXB@Gz4J@ףp= @(\•@@zGD@q= ףQ@p= 3V@Q$@Hz5@ףp= A@Hz8@:@]@)\M@(\O@ ףp=jG@0@(\@@Q>P@R5@p= ףB@ ףp=C@RO@= ףpR@n@33333Kk@Q o@̄m@(\r@Hzkp@q= ףr@p@Gzk@fffffn@QMl@q= ףXn@33333k@Qtu@Gz:u@(\q@q= ף0k@\(l@zGn@)\pn@ ףp=l@Hz?l@Q$p@(\Wm@zGp@Hzwn@q= ףTp@zG)l@\(r@ ףp=rn@j@= ףpq@q= ףl@Dq@Qk@ףp= l@l@fffffm@Qfq@(\l@ףp= n@ ףp=zl@̄l@Qk@ ףp="m@{GNq@Q+q@Hzm@= ףpm@= ףpm@\(p@(\m@ףp= j@Qm@QMo@p@Q]o@(\l@ףp= q@(p@{G n@== ?@4 4C_xSNOD8H@PX== ?@4 4C_x== ?@4 4hC_x== ?@4 4PC_x== ?@4 48C_xSNOD`hpkF=D@+MJA7@3@-C%@X9v%@CVz@~k 5@6٬9@=UM(@?ܵ3@B-@x&#@k d @߾:@w@ꕲ q$@8mT5@H@2U0*3-@4@b2@gj+(@UHI%#@Ď@\m><@7Ou@#S @҇.#@pwn@;k]h@Z_$E@M@ϽK#@0/>:!@V/k6@m{@@04i%@D0@b=1@~@yX5?\(\?EGr?=>tA}?b48?6 r?'XQ?0䠄?E?S㥛? 'I?QH?9?x( ?Ҥt?Cf?4 ?aM?k ?£?f&?7',??K^c@?MbX9?zG?'UHI?`?K;?מY?.9?ǵb? )??#?Yw?%1 ?@߾? pU?:;%?m, PS?+ٱ?-=?b=?;k]h?mQfL?^?@0G?DJ?a)?sh|??x=\r?gy?1?X5;N?7~? )??z?JY8?XQi>?7̒?5Ry;?f,N?Yڊ?XL~?=?FZ*oG8?"7 ?N],?oŏ1?3??8gDio?I2?1?)[Z ?ea?X?('$?6Y?:f?**?B[Υ?V ?4?&S?Pp?9EGr?ǵb?&pn?M$z?BO}:?#-R\?K$(??[ m?Yڊ?מY?s)?4?t ^?{?X?RI&?:M ?].;1?ϛT? vö?`q89?3k?c#?N],?('?7?,Ԛ?m?=>tA?\U]?X9v?=~o?"GG? '?==@ C_==@C_== ?@4 4C_x==@C_SNOD  0@==@C_==@C_s Zs8PsPsXs`s`sChsaxsssasssԲsղsZ@ssssstYtdp(t(t8t@tQ@tHt3HtGHtXtQXtht ptt*mtntݴttttttt&Ett@t)t) u:0u;8u@u@u@uHu(xPu$nhuspuxuxuԲsT[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?T[r?1s suPs{PsXs `sL`shsvMxsǕs%s sl0s sssVsJssʺs|s@tt(t7(t"8t@t@tHtΩHtiHt)Xt*XthtCpt tttWt2+tHtHtI0trt5tNtsttt u40u8u~@u@ub@uҹHuPu^hu5puxuYxu==@C_==@x!C_SNODP  == ?@4 4`#C_x== ?@4 4H%C_x== ?@4 40'C_x== ?@4 4)C_xsZd8@HzG>@V-o+@xf:@vZ@@X9v@(\@@9vB@uV.A@{G:#@Zd;7@x&)@C\K@J +V5@x&18@ ףp=)@QQ@/0@x&q)@(@̌0@v@@d;OwE@-g1@uV(@Hz'C@9v'@v4@V-6@+4@-D@1Zd@KE@}?5^I@L7A`A@T㥛Ā7@x&1C@"~&@PnB@Q 1@x&1A@jt<@(\B2@X9H@"~3@I +@@jtX(@ rC@F2@-`@w/@@(\G@fffffM@Zd;-@d;O71@B`"{E@Cl<@NbX9J@}?5^4@Gz,@n0@#S@zGV@m2R@(\U@VY@ʡED@`"iV@n@V@X9vT@/$R@QH@GzP@Cl[W@|?5^X@|?5^2Q@1ZdO@J +]@xfI@jtL@{GzO@|?5fR@K7X@!rh^@}?5^AR@-臨K@v"Q@"&R@L7A`S@#~jP@V-O@q= ףY@vL@w/]Y@/$K@_I U@ rS@:vP@K7QS@jtZ@ףp= P@,U@QuS@PncP@x&1X@V-Q@MbX@7A`xT@ r`Y@w/=L@#~j4`@K@v*V@sh|]@nZP@x&1N@X9v~X@HzwS@S㥛X@rhDR@T㥛@J@#~jM@@=BM=:B >B٣=BPB55BCJMBs-GB.8Bh9B 9B\[9B!Z9BRB@'HQB@nc99BEBy=B=B@nc99B̿:Bc=@B 9]6B):IB2:Bu^@BI]=B8B%a:B@;B`R<HBaDEBHi>B7B AB"EB??BHg;B:B@s+?B`@zFB@F=B`IoABAAGB@ S>BsY=BV_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?V_?SNOD== ?@4 43C_x==@4C_== ?@4 46C_x== ?@4 48C_xSNOD(H,0X-8h.== ?@4 4:C_xiv?vi?vi?vi?vi?iv?V_?V_?vi?iv?vi?vi?V_?iv?V_?iv?V_?iv?V_?iv?V_?vi?vi?iv?V_?V_?Pf?vi?iv?vi?vi?iv?V_?iv?vi?Pf?vi?iv?iv?vi?vi?vi?V_?iv?vi?vi?vi?vi?Pf?V_?vi?V_?iv?Pf?vi?Pf?vi?vi?vi?iv?iv?sn@33333Kk@Q o@̄m@(\r@Hzkp@q= ףr@p@Gzk@fffffn@QMl@q= ףXn@33333k@Qtu@Gz:u@(\q@q= ף0k@\(l@zGn@)\pn@ ףp=l@(\k@Q$p@(\Wm@zGp@Hzwn@q= ףTp@zG)l@\(r@ ףp=rn@j@= ףpq@q= ףl@Dq@Qk@ףp= l@l@fffffm@Qfq@(\l@q= ף`m@ ףp=zl@̄l@Qk@ ףp="m@{GNq@Q+q@Hzm@= ףpm@= ףpm@\(p@(\m@ףp= j@Qm@QMo@ ףp=p@= ףp-n@(\l@ףp= q@(p@{G n@ p@zGm@Gzp@= ףp5o@Qt@q@33333u@Qr@\m@)\p@(\n@Rq@Qp@(\w@Gzx@{Gt@fffffn@ףp= p@(\p@Yp@)\o@Q6n@p= wr@33333o@\(Pr@Gzq@(\Iq@QPo@(\Sv@Qq@ ףp=l@)\s@Qp@33333Gr@n@Gz,p@fffffo@GzQW(\R= ףpCzGI@zGc\(hApB== ?@4 4@JC_x== ?@4 4(LC_xQd{Gz.@(\]GzPGz>R{GzGq= ףZ ףp= @Q2@`@\(R@ףp= 7Q@HzhHzG?wHzgB(\RS ףp=m@33333#X`e,Qx1E@fffffY@QE9@= ףpq@\(X333333/p= A= ףp Q@q= ף^@RoHzA@\(Diq= ףk ףp=f@(\•i@)\N\(p@\(Eףp= GHzGJ@(\d= ףpk(\a ףp=1@Zp= X@c@33333]@Qa33333X@(\•G@(\O_@(\Ua@Q;Tףp= 7HYX)\c@Q@p= MGz4N@33333@@ ףp=`@QW@\(LR@{Gzr@p= #LQA33333SG= ףp]aQ[X@Ql(\@p= c ףp=J:RY(\R@zGAJ@Qa@= ףpg`@Gz&@ ףp=aq= ףDp@G{G:GQ pQV@QNzG^ ףp=J^(\Ze(\Dףp= j@Q ^@Qs`PdQhT33333azGP)\9@q= ףp@Q>AzGYiQ5RAU{G"b?QP@{Gcfffff^@Q+5(\i@`@0p= ף?= ףpud@{G:7QB@GzbX9@jt֍@X9va@ ףp=@uV@w/@+م@1Zڍ@$T@Gz@@ rhތ@zG @~jt@Eč@%CԌ@%CԌ@%C @ʡT@Zd;\@F@?5^I@|?5=@jt@/$@9v@-@m(@$@= ףpی@fffff@'1݌@x&X@Pn@Zd;O&@HzS@#~jG@q= ףe@p= Q@rh@|?5^@xY@k@ +@!rh_@Q@vd@V@V@~j@y&1э@l@㥛 @ ףp=P@%C`@;O@y&1B@v[@S@vʍ@v@ rh[@#~j{@Cl|@S {@!rh/{@w/y@5^I Pz@-}@S㥛y@ r~@7A`xy@X9v^@(\V@A`и@/$\@I +@+@ˡE@Mb^@5^I [@S㥛@A`@F@+ @vJ@jt.@C@Cl@ +ł@~jtS@Q@A`@/ݪ@ʡE;@/ń@33333@!rh@p= @Zd7@33333@!rh7@ʡE@+΁@w/[@V-@1Zj@ʡE@%C@W@o@jtF@-‡@K@= ףp@@uV@y@Zd׈@Mb҆@B`"@1Z?@K@C\@-&^@zG~@@zG @p= @q= ף2@HzO@Hz@(\ @|PkR@60@㥛 hm@^I _o@1Z@|?5@+@I +ӄ@jtq@/ݸ@\(@ףp= n@(\@R@ ףp=\@Q@+FH@H}G@%Cd@Gzb@= ףpyf@(\½v@X9v`w@J +8@?5^I@+@Gz@Hzߐ@Q@Gz@33333P@zGF@(\'@Hz/@RA@w@\(}@nn@PnGs@v:@Qݐ@Q@\(̓@Q̓@ђ@R@(\@@'@(\3@Rݝ@